Pergunta
Question Simplify the expression completely if possible. (x^3-4x^2)/(4x) Answer Attemptiou of 3 square
Solução
Verification of experts
4.4236 Voting
GonçaloProfissional · Tutor por 6 anos
Responder
To simplify the expression, we can factor out the common factor of $x$ from the numerator:<br /><br />$\frac{x^3 - 4x^2}{4x} = \frac{x(x^2 - 4)}{4x}$<br /><br />Next, we can cancel out the common factor of $x$ in the numerator and denominator:<br /><br />$\frac{x(x^2 - 4)}{4x} = \frac{x^2 - 4}{4}$<br /><br />Finally, we can factor the numerator as a difference of squares:<br /><br />$\frac{x^2 - 4}{4} = \frac{(x - 2)(x + 2)}{4}$<br /><br />Therefore, the simplified expression is $\frac{(x - 2)(x + 2)}{4}$.
Clique para avaliar: