Primeira página
/
Matemática
/
Which formula can be used to find any term, n, of the sequence 1,-(2)/(3),(4)/(9) , __ 7 a_(n)=(-(2)/(3))^n-1 a_(n)=-(2)/(3)cdot 1^n-1 a_(n)=-(2)/(3)cdot (n-1) a_(n)=-((2)/(3))^n-1

Pergunta

Which formula can be used to find any term, n, of
the sequence
1,-(2)/(3),(4)/(9)
,
__ 7
a_(n)=(-(2)/(3))^n-1
a_(n)=-(2)/(3)cdot 1^n-1
a_(n)=-(2)/(3)cdot (n-1)
a_(n)=-((2)/(3))^n-1

Which formula can be used to find any term, n, of the sequence 1,-(2)/(3),(4)/(9) , __ 7 a_(n)=(-(2)/(3))^n-1 a_(n)=-(2)/(3)cdot 1^n-1 a_(n)=-(2)/(3)cdot (n-1) a_(n)=-((2)/(3))^n-1

Solução

expert verifiedVerification of experts
4.2310 Voting
avatar
PabloElite · Tutor por 8 anos

Responder

To find the formula for the the sequence $1, -\frac{2}{3}, \frac{4}{9}, \ldots$, we need to identify the pattern in the sequence.<br /><br />Looking at the sequence, we can see that each term is obtained by multiplying the previous term by $-\frac{2}{3}$. Therefore, the formula for the nth term of the sequence is:<br /><br />$a_{n}=(-\frac {2}{3})^{n-1}$<br /><br />This formula correctly generates the first three terms of the sequence:<br />- For n=1, $a_{1}=(-\frac {2}{3})^{1-1}=1$<br />- For n=2, $a_{2}=(-\frac {2}{3})^{2-1}=-\frac {2}{3}$<br />- For n=3, $3}=(-\frac {2}{3})^{3-1}=\frac {4}{9}$<br /><br />Therefore, the correct formula for finding any term, n, of the sequence is $a_{n}=(-\frac {2}{3})^{n-1}$.
Clique para avaliar: