Pergunta
5) Demonstrar: (n-1)![(n+1)!-n!]=(n!)^2
Solução
Verification of experts
4.3168 Voting
ArianeProfissional · Tutor por 6 anos
Responder
Para demonstrar a igualdade $(n-1)![(n+1)!-n!]=(n!)^{2}$, vamos simplificar ambos os lados da equação.<br /><br />Começamos simplificando o lado esquerdo da equação:<br /><br />$(n-1)![(n+1)!-n!]=(n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(n+1)!-n!]= (n-1)![(
Clique para avaliar: