Primeira página
/
Matemática
/
((frac (a-b)/(sqrt (a)+sqrt {b)))^3+2asqrt (a)+bsqrt (b)}(3a^2+3bsqrt (ab))+(sqrt (ab)-a)/(asqrt (a)-bsqrt (a))

Pergunta

((frac (a-b)/(sqrt (a)+sqrt {b)))^3+2asqrt (a)+bsqrt (b)}(3a^2+3bsqrt (ab))+(sqrt (ab)-a)/(asqrt (a)-bsqrt (a))

((frac (a-b)/(sqrt (a)+sqrt {b)))^3+2asqrt (a)+bsqrt (b)}(3a^2+3bsqrt (ab))+(sqrt (ab)-a)/(asqrt (a)-bsqrt (a))

Solução

expert verifiedVerification of experts
4.6244 Voting
avatar
LorenzoMestre · Tutor por 5 anos

Responder

We are tasked with simplifying the given expression:<br /><br />\[<br />\frac{\left(\frac{a-b}{\sqrt{a}+\sqrt{b}}\right)^3 + 2a\sqrt{a} + b\sqrt{b}}{3a^2 + 3b\sqrt{ab}} + \frac{\sqrt{ab} - a}{a\sqrt{a} - b\sqrt{a}}<br />\]<br /><br />### Step 1: Simplify the first term<br />The numerator of the first fraction is:<br />\[<br />\left(\frac{a-b}{\sqrt{a}+\sqrt{b}}\right)^3 + 2a\sqrt{a} + b\sqrt{b}.<br />\]<br />Let us simplify \(\frac{a-b}{\sqrt{a}+\sqrt{b}}\). Multiply numerator and denominator by \(\sqrt{a}-\sqrt{b}\) (the conjugate of the denominator):<br />\[<br />\frac{a-b}{\sqrt{a}+\sqrt{b}} = \frac{(a-b)(\sqrt{a}-\sqrt{b})}{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})} = \frac{(a-b)(\sqrt{a}-\sqrt{b})}{a-b}.<br />\]<br />Since \(a \neq b\), we cancel \(a-b\) in the numerator and denominator:<br />\[<br />\frac{a-b}{\sqrt{a}+\sqrt{b}} = \sqrt{a} - \sqrt{b}.<br />\]<br />Thus, the cube of this expression is:<br />\[<br />\left(\frac{a-b}{\sqrt{a}+\sqrt{b}}\right)^3 = (\sqrt{a} - \sqrt{b})^3.<br />\]<br />Using the binomial expansion for \((x-y)^3\), we have:<br />\[<br />(\sqrt{a} - \sqrt{b})^3 = (\sqrt{a})^3 - 3(\sqrt{a})^2(\sqrt{b}) + 3(\sqrt{a})(\sqrt{b})^2 - (\sqrt{b})^3,<br />\]<br />which simplifies to:<br />\[<br />a\sqrt{a} - 3a\sqrt{b} + 3b\sqrt{a} - b\sqrt{b}.<br />\]<br /><br />Now, the numerator of the first term becomes:<br />\[<br />(a\sqrt{a} - 3a\sqrt{b} + 3b\sqrt{a} - b\sqrt{b}) + 2a\sqrt{a} + b\sqrt{b}.<br />\]<br />Combine like terms:<br />\[<br />(a\sqrt{a} + 2a\sqrt{a}) - 3a\sqrt{b} + 3b\sqrt{a} + (-b\sqrt{b} + b\sqrt{b}),<br />\]<br />which simplifies to:<br />\[<br />3a\sqrt{a} - 3a\sqrt{b} + 3b\sqrt{a}.<br />\]<br /><br />The denominator of the first term is:<br />\[<br />3a^2 + 3b\sqrt{ab}.<br />\]<br />Factor out \(3\) from both terms:<br />\[<br />3(a^2 + b\sqrt{ab}).<br />\]<br /><br />Thus, the first term becomes:<br />\[<br />\frac{3a\sqrt{a} - 3a\sqrt{b} + 3b\sqrt{a}}{3(a^2 + b\sqrt{ab})}.<br />\]<br />Cancel the common factor of \(3\) in the numerator and denominator:<br />\[<br />\frac{a\sqrt{a} - a\sqrt{b} + b\sqrt{a}}{a^2 + b\sqrt{ab}}.<br />\]<br /><br />### Step 2: Simplify the second term<br />The second term is:<br />\[<br />\frac{\sqrt{ab} - a}{a\sqrt{a} - b\sqrt{a}}.<br />\]<br />Factor out \(\sqrt{a}\) from the denominator:<br />\[<br />a\sqrt{a} - b\sqrt{a} = \sqrt{a}(a - b).<br />\]<br />Thus, the second term becomes:<br />\[<br />\frac{\sqrt{ab} - a}{\sqrt{a}(a-b)}.<br />\]<br />Factor out \(\sqrt{a}\) from the numerator:<br />\[<br />\sqrt{ab} - a = \sqrt{a}(\sqrt{b} - \sqrt{a}).<br />\]<br />So the second term becomes:<br />\[<br />\frac{\sqrt{a}(\sqrt{b} - \sqrt{a})}{\sqrt{a}(a-b)}.<br />\]<br />Cancel \(\sqrt{a}\) in the numerator and denominator:<br />\[<br />\frac{\sqrt{b} - \sqrt{a}}{a-b}.<br />\]<br />Factor \(-1\) from the numerator:<br />\[<br />\frac{\sqrt{b} - \sqrt{a}}{a-b} = \frac{-(\sqrt{a} - \sqrt{b})}{a-b}.<br />\]<br />Multiply numerator and denominator by \(-1\):<br />\[<br />\frac{-(\sqrt{a} - \sqrt{b})}{a-b} = \frac{\sqrt{a} - \sqrt{b}}{b-a}.<br />\]<br /><br />### Step 3: Combine the two terms<br />The full expression is now:<br />\[<br />\frac{a\sqrt{a} - a\sqrt{b} + b\sqrt{a}}{a^2 + b\sqrt{ab}} + \frac{\sqrt{a} - \sqrt{b}}{b-a}.<br />\]<br />Notice that the second term has a denominator of \(b-a\), which is the negative of \(a-b\). Rewrite the second term as:<br />\[<br />-\frac{\sqrt{a} - \sqrt{b}}{a-b}.<br />\]<br />Now combine the two terms over a common denominator. The least common denominator (LCD) is \((a^2 + b\sqrt{ab})(a-b)\). Rewrite each fraction with this denominator.<br /><br />For the first term:<br />\[<br />\frac{a\sqrt{a} - a\sqrt{b} + b\sqrt{a}}{a^2 + b\sqrt{ab}} = \frac{(a\sqrt{a} - a\sqrt{b} + b\sqrt{a})(a-b)}{(a^2 + b\sqrt{ab})(a-b)}.<br />\]<br /><br />For the second term:<br />\[<br />-\frac{\sqrt{a} - \sqrt{b}}{a-b} = \frac{-(\sqrt{a} - \sqrt{b})(a^2 + b\sqrt{ab})}{(a^2 + b\sqrt{ab})(a-b)}.<br />\]<br /><br />Combine the two fractions:<br />\[<br />\frac{(a\sqrt{a} - a\sqrt{b} + b\sqrt{a})(a-b) - (\sqrt{a} - \sqrt{b})(a^2 + b\sqrt{ab})}{(a^2 + b\sqrt{ab})(a-b)}.<br />\]<br /><br />Simplify the numerator (this involves expanding and combining like terms). After simplification, the entire expression reduces to:<br />\[<br />0.<br />\]<br /><br />### Final Answer:<br />\[<br />\boxed{0}<br />\]
Clique para avaliar: