Primeira página
/
Matemática
/
(a) sqrt28+sqrt63+sqrt175 b. sqrt27-sqrt75+sqrt243 c. sqrt2(sqrt8+2sqrt2)

Pergunta

(a) sqrt28+sqrt63+sqrt175 b. sqrt27-sqrt75+sqrt243 c. sqrt2(sqrt8+2sqrt2)

(a) sqrt28+sqrt63+sqrt175 b. sqrt27-sqrt75+sqrt243 c. sqrt2(sqrt8+2sqrt2)

Solução

expert verifiedVerification of experts
4.4286 Voting
avatar
LeiaMestre · Tutor por 5 anos

Responder

a. 10\sqrt{7} b. 7\sqrt{3} c. 8


Explicação


a. Untuk menyelesaikan \sqrt{28} + \sqrt{63} + \sqrt{175}, kita dapat menyederhanakan setiap akar kuadrat:
\sqrt{28} = 2\sqrt{7}
\sqrt{63} = 3\sqrt{7}
\sqrt{175} = 5\sqrt{7}
Jadi, \sqrt{28} + \sqrt{63} + \sqrt{175} = 2\sqrt{7} + 3\sqrt{7} + 5\sqrt{7} = 10\sqrt{7}.

b. Untuk menyelesaikan \sqrt{27} - \sqrt{75} + \sqrt{243}, kita dapat menyederhanakan setiap akar kuadrat:
\sqrt{27} = 3\sqrt{3}
\sqrt{75} = 5\sqrt{3}
\sqrt{243} = 9\sqrt{3}
Jadi, \sqrt{27} - \sqrt{75} + \sqrt{243} = 3\sqrt{3} - 5\sqrt{3} + 9\sqrt{3} = 7\sqrt{3}.

c. Untuk menyelesaikan \sqrt{2}(\sqrt{8} + 2\sqrt{2}), kita dapat menyederhanakan akar kuadrat:
\sqrt{8} = 2\sqrt{2}
Jadi, \sqrt{2}(\sqrt{8} + 2\sqrt{2}) = \sqrt{2}(2\sqrt{2} + 2\sqrt{2}) = 8.

Clique para avaliar: