Primeira página
/
Matemática
/
16. Utilizando o mdc entre o numerador e o denominador, torne irredutives as fragoes. c. (112)/(80) a. (64)/(144) b. (90)/(225) 17. A Secretaria da Cultura de uma cidade está promovendo dois espetáculos e reservou uma das noites para o públi estudantil. Existem, para doação a escolas, 2000 ingressos de um espetáculo e 1575 de outro. Cada escola de receber ingressos para somente um dos espetáculos, e todas as escolas devem receber a mesma quantidade ingressos. Distribuindo todos os ingressos, qual éo número minimo de escolas que poderão ser contemplad nessa doação?

Pergunta

16. Utilizando o mdc entre o numerador e o denominador, torne irredutives as fragoes.
c. (112)/(80)
a. (64)/(144)
b. (90)/(225)
17. A Secretaria da Cultura de uma cidade está promovendo dois espetáculos e reservou uma das noites para o públi
estudantil. Existem, para doação a escolas, 2000 ingressos de um espetáculo e 1575 de outro. Cada escola de
receber ingressos para somente um dos espetáculos, e todas as escolas devem receber a mesma quantidade
ingressos. Distribuindo todos os ingressos, qual éo número minimo de escolas que poderão ser contemplad
nessa doação?

16. Utilizando o mdc entre o numerador e o denominador, torne irredutives as fragoes. c. (112)/(80) a. (64)/(144) b. (90)/(225) 17. A Secretaria da Cultura de uma cidade está promovendo dois espetáculos e reservou uma das noites para o públi estudantil. Existem, para doação a escolas, 2000 ingressos de um espetáculo e 1575 de outro. Cada escola de receber ingressos para somente um dos espetáculos, e todas as escolas devem receber a mesma quantidade ingressos. Distribuindo todos os ingressos, qual éo número minimo de escolas que poderão ser contemplad nessa doação?

Solução

expert verifiedVerification of experts
3.5282 Voting
avatar
AmáliaMestre · Tutor por 5 anos

Responder

16. Para tornar as frações irredutíveis, devemos utilizar o maior divisor comum (MDC) entre o numerador e o denominador. Vamos calcular o MDC para cada fração:<br /><br />a. $\frac{64}{144}$: O MDC entre 64 e 144 é 16. Dividindo ambos pelo MDC, temos $\frac{64 \div 16}{144 \div 16} = \frac{4}{9}$.<br /><br />b. $\frac{90}{225}$: O MDC entre 90 e 225 é 15. Dividindo ambos pelo MDC, temos $\frac{90 \div 15}{225 \div 15} = \frac{6}{15}$.<br /><br />c. $\frac{112}{80}$: O MDC entre 112 e 80 é 16. Dividindo ambos pelo MDC, temos $\frac{112 \div 16}{80 \div 16} = \frac{7}{5}$.<br /><br />Portanto, as frações irredutíveis são:<br /><br />a. $\frac{4}{9}$<br />b. $\frac{6}{15}$<br />c. $\frac{7}{5}$<br /><br />17. Para distribuir todos os ingressos de forma igual entre as escolas, devemos encontrar o maior número de escolas que pode dividir igualmente 2000 e 1575. Para isso, calculamos o MDC entre 2000 e 1575.<br /><br />O MDC entre 2000 e 1575 é 25. Portanto, o número mínimo de escolas que podem ser contempladas é 25.<br /><br />Portanto, o número mínimo de escolas que podem ser contempladas é 25.
Clique para avaliar: