Primeira página
/
Matemática
/
The equation of the piecewise defined function f(x) is below. What is the value of f(1) f(x)= ) x^2+1,&-4leqslant xlt 1 -x^2,&1leqslant xlt 2 3x,&xgeqslant 2 f(1)=-2 f(1)=-1 f(1)=2 f(1)=3

Pergunta

The equation of the piecewise defined function
f(x) is below. What is the value of f(1)
f(x)= ) x^2+1,&-4leqslant xlt 1 -x^2,&1leqslant xlt 2 3x,&xgeqslant 2 
f(1)=-2
f(1)=-1
f(1)=2
f(1)=3

The equation of the piecewise defined function f(x) is below. What is the value of f(1) f(x)= ) x^2+1,&-4leqslant xlt 1 -x^2,&1leqslant xlt 2 3x,&xgeqslant 2 f(1)=-2 f(1)=-1 f(1)=2 f(1)=3

Solução

expert verifiedVerification of experts
3.6192 Voting
avatar
MarioAvançado · Tutor por 1 anos

Responder

To find the value of $f(1)$, we need to determine which piece of the piecewise function applies to $x = 1$.<br /><br />Looking at the given equation, we can see that the second piece of the function applies to $1 \leqslant x < 2$. Therefore, we can use this piece to find the value of $f(1)$.<br /><br />The second piece of the function is $-x^2$. Substituting $x = 1$ into this expression, we get:<br /><br />$-1^2 = -1$<br /><br />Therefore, the value of $f(1)$ is $-1$.<br /><br />So, the correct answer is $f(1) = -1$.
Clique para avaliar: