Primeira página
/
Matemática
/
Use the ALEKS calculator to evaluate each expression. Round your answers to the nearest hundredth. If applicable, For each expression, make sure you are in the correct calcul cot(-(4pi )/(9))= csc(-180^circ )= square sec45^circ =

Pergunta

Use the ALEKS calculator to evaluate each expression.
Round your answers to the nearest hundredth. If applicable,
For each expression, make sure you are in the correct calcul
cot(-(4pi )/(9))=
csc(-180^circ )= square 
sec45^circ =

Use the ALEKS calculator to evaluate each expression. Round your answers to the nearest hundredth. If applicable, For each expression, make sure you are in the correct calcul cot(-(4pi )/(9))= csc(-180^circ )= square sec45^circ =

Solução

expert verifiedVerification of experts
4.7300 Voting
avatar
PauloMestre · Tutor por 5 anos

Responder

To evaluate each expression, we will use the ALEKS calculator and round the answers to the nearest hundredth if applicable.<br /><br />1. $cot(-\frac {4\pi }{9})$<br /> - First, let's find the value of $-\frac {4\pi }{9}$ in degrees. Since $\pi$ radians is equal to $180^\circ$, we can convert $-\frac {4\pi }{9}$ to degrees by multiplying it by $\frac{180}{\pi}$.<br /> - $-\frac {4\pi }{9} \times \frac{180}{\pi} = -80^\circ$<br /> - Now, we can find the cotangent of $-80^\circ$ using the ALEKS calculator.<br /> - $cot(-80^\circ) \approx -0.32492$<br /> - Rounding to the nearest hundredth, $cot(-80^\circ) \approx -0.32$<br /><br />2. $csc(-180^{\circ })$<br /> - The cosecant function is the reciprocal of the sine function. So, we need to find the sine of $-180^\circ$ and take its reciprocal.<br /> - The sine of $-180^\circ$ is $-1$.<br /> - Therefore, $csc(-180^\circ) = \frac{1}{\sin(-180^\circ)} = \frac{1}{-1} = -1$<br /><br />3. $sec45^{\circ }$<br /> - The secant function is the reciprocal of the cosine function. So, we need to find the cosine of $45^\circ$ and take its reciprocal.<br /> - The cosine of $45^\circ$ is $\frac{\sqrt{2}}{2}$.<br /> - Therefore, $sec45^\circ = \frac{1}{\cos45^\circ} = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2}$<br /><br />So, the evaluated expressions are:<br />1. $cot(-\frac {4\pi }{9}) \approx -0.32$<br />2. $csc(-180^{\circ }) = -1$<br />3. $sec45^{\circ } = \sqrt{2}$
Clique para avaliar: