Primeira página
/
Matemática
/
Bellwork - 1219.24 1) -8sqrt (36n^2) 2) 6sqrt (32n^3) 3) -7sqrt (18p^3)

Pergunta

Bellwork - 1219.24
1)
-8sqrt (36n^2)
2)
6sqrt (32n^3)
3)
-7sqrt (18p^3)

Bellwork - 1219.24 1) -8sqrt (36n^2) 2) 6sqrt (32n^3) 3) -7sqrt (18p^3)

Solução

expert verifiedVerification of experts
4.3216 Voting
avatar
CarlinhosMestre · Tutor por 5 anos

Responder

1) To simplify the expression $-8\sqrt {36n^{2}}$, we can first simplify the square root. The square root of 36 is 6, and the square root of $n^{2}$ is n. So, $\sqrt {36n^{2}} = 6n$. Now, we can multiply this by -8 to get $-8 \cdot 6n = -48n$.<br /><br />2) To simplify the expression $6\sqrt {32n^{3}}$, we can first simplify the square root. The square root of 32 is 4$\sqrt{2}$, and the square root of $n^{3}$ is $n\sqrt{n}$. So, $\sqrt {32n^{3}} = 4\sqrt{2}n\sqrt{n}$. Now, we can multiply this by 6 to get $6 \cdot 4\sqrt{2}n\sqrt{n} = 24n\sqrt{2n}$.<br /><br />3) To simplify the expression $-7\sqrt {18p^{3}}$, we can first simplify the square root. The square root of 18 is 3$\sqrt{2}$, and the square root of $p^{3}$ is $p\sqrt{p}$. So, $\sqrt {18p^{3}} = 3\sqrt{2}p\sqrt{p}$. Now, we can multiply this by -7 to get $-7 \cdot 3\sqrt{2}p\sqrt{p} = -21p\sqrt{2p}$.<br /><br />Therefore, the simplified expressions are:<br />1) $-48n$<br />2) $24n\sqrt{2n}$<br />3) $-21p\sqrt{2p}$
Clique para avaliar: