Pergunta
(3)/(8)+(1)/(8)-(1)/(3)+(1)/(4)= 1(1)/(12) (4)/(17) (1)/(6) (5)/(12)
Solução
Verification of experts
4.4219 Voting
WanessaMestre · Tutor por 5 anos
Responder
To solve the expression \(\frac{3}{8} + \frac{1}{8} - \frac{1}{3} + \frac{1}{4}\), we need to find a common denominator for all the fractions involved. The denominators are 8, 3, and 4. The least common multiple (LCM) of these numbers is 24.<br /><br />First, convert each fraction to have a denominator of 24:<br /><br />1. \(\frac{3}{8}\):<br /> \[<br /> \frac{3}{8} = \frac{3 \times 3}{8 \times 3} = \frac{9}{24}<br /> \]<br /><br />2. \(\frac{1}{8}\):<br /> \[<br /> \frac{1}{8} = \frac{1 \times 3}{8 \times 3} = \frac{3}{24}<br /> \]<br /><br />3. \(\frac{1}{3}\):<br /> \[<br /> \frac{1}{3} = \frac{1 \times 8}{3 \times 8} = \frac{8}{24}<br /> \]<br /><br />4. \(\frac{1}{4}\):<br /> \[<br /> \frac{1}{4} = \frac{1 \times 6}{4 \times 6} = \frac{6}{24}<br /> \]<br /><br />Now, add and subtract these fractions:<br />\[<br />\frac{9}{24} + \frac{3}{24} - \frac{8}{24} + \frac{6}{24}<br />\]<br /><br />Combine the numerators over the common denominator:<br />\[<br />\frac{9 + 3 - 8 + 6}{24} = \frac{10}{24}<br />\]<br /><br />Simplify the fraction \(\frac{10}{24}\):<br />\[<br />\frac{10}{24} = \frac{5}{12}<br />\]<br /><br />Therefore, the correct answer is:<br />\[<br />\boxed{\frac{5}{12}}<br />\]
Clique para avaliar: