Pergunta
Find all the zeros of the quadratic function. y=x^2-12x+20 If there is more than one zero, separate them with commas. If there are no zeros, click on "None". square square
Solução
Verification of experts
3.4304 Voting
SuzanaMestre · Tutor por 5 anos
Responder
To find the zeros of the quadratic function $y = x^2 - 12x + 20$, we need to solve the equation $x^2 - 12x + 20 = 0$.<br /><br />We can use the quadratic formula to solve this equation. The quadratic formula is given by:<br /><br />$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$<br /><br />In this case, $a = 1$, $b = -12$, and $c = 20$. Plugging these values into the quadratic formula, we get:<br /><br />$x = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(1)(20)}}{2(1)}$<br /><br />Simplifying further, we have:<br /><br />$x = \frac{12 \pm \sqrt{144 - 80}}{2}$<br /><br />$x = \frac{12 \pm \sqrt{64}}{2}$<br /><br />$x = \frac{12 \pm 8}{2}$<br /><br />Therefore, the zeros of the quadratic function $y = x^2 - 12x + 20$ are $x = 10$ and $x = 2$.
Clique para avaliar: