Primeira página
/
Matemática
/
m(x)=x^2+4x (mn)(x)= x^2+4x(x) (x^2+4x)(x) COMPLETE Which is equal to: x^3+4x^2 5x^2 4x^4 COMPLETE n(x)=x Evaluate (mn)(x) for x=-3 (mn)(-3)=9 COMPLETE (m)/(n)(x),xneq 0 COMPLETE Evaluate((m)/(n))(x) for x=-3. (m)/(n)(-3)=

Pergunta

m(x)=x^2+4x
(mn)(x)=
x^2+4x(x)
(x^2+4x)(x)
COMPLETE
Which is equal to:
x^3+4x^2
5x^2
4x^4
COMPLETE
n(x)=x
Evaluate (mn)(x) for x=-3
(mn)(-3)=9
COMPLETE
(m)/(n)(x),xneq 0
COMPLETE
Evaluate((m)/(n))(x) for x=-3.
(m)/(n)(-3)=

m(x)=x^2+4x (mn)(x)= x^2+4x(x) (x^2+4x)(x) COMPLETE Which is equal to: x^3+4x^2 5x^2 4x^4 COMPLETE n(x)=x Evaluate (mn)(x) for x=-3 (mn)(-3)=9 COMPLETE (m)/(n)(x),xneq 0 COMPLETE Evaluate((m)/(n))(x) for x=-3. (m)/(n)(-3)=

Solução

expert verifiedVerification of experts
4.3320 Voting
avatar
TarsilaMestre · Tutor por 5 anos

Responder

To evaluate $\frac{m}{n}(x)$ for $x=-3$, we first need to find the expressions for $m(x)$ and $n(x)$.<br /><br />Given:<br />$m(x) = x^2 + 4x$<br />$n(x) = x$<br /><br />Now, let's find $\frac{m}{n}(x)$:<br />$\frac{m}{n}(x) = \frac{x^2 + 4x}{x}$<br /><br />Simplifying the expression:<br />$\frac{m}{n}(x) = x + 4$<br /><br />Now, we can evaluate $\frac{m}{n}(x)$ for $x=-3$:<br />$\frac{m}{n}(-3) = -3 + 4 = 1$<br /><br />Therefore, $\frac{m}{n}(-3) = 1$.
Clique para avaliar: